MOLECULAR MECHANICS (MM3) CALCULATIONS ON SULFIDES

NORMAN L. ALLINGER,* MARITZA QUINN, MITA RAHMAN AND KUOHSIANG CHEN

Department of Chemistry, School of Chemical Sciences, University of Georgia, Athens, Georgia 30602, U.S.A.

The structures of eleven sulfide compounds including methanethiol, ethanethiol, dimethyl sulfide, ethyl methyl sulfide, di-*tert*-butyl sulfide, thiacyclopentane, thiacyclobutane, 5-thiabicyclo [2.1.1] hexane and 7-thiabicyclo [2.2.1] heptane have been calculated to agree with experimental data, along with the vibrational spectra of the first three of these. The heats of formation of 24 sulfides (including mercaptans) have also been calculated to agree with experimental data. In general, the force field for sulfides seems to be similar in accuracy with that for hydrocarbons.

INTRODUCTION

Earlier papers have described the MM3 force field, \dagger which has previously been used for calculations on hydrocarbons¹ and several kinds of functionalized molecules.²⁻⁵ The present work is concerned with the extension of these calculations to dialkyl sulfides, including mercaptans.

Over the years it has been shown⁶ that there are many errors, mostly small, built into the MM2 force field. Rather than trying to continue to patch these, it was decided to start again from the beginning, and develop a general new force field, which is called MM3. In addition to fitting the information previously in agreement with MM2, \ddagger it was desirable to fit additional information, particularly including vibrational spectra. **RESULTS AND DISCUSSION**

The procedure used began with the MM2 force field as a starting point. Because of various changes in the potential functions and in the hydrocarbon parameters. preliminary structures were initially calculated using the MM3 force field but the MM2 parameters, and these were only fair. Systematic adjustments were then made to the various parameters so as to improve the structures. Additionally, the vibrational spectra were calculated for three simple model compounds - methylmercaptan, ethylmercaptan and dimethyl sulfide. After the parameter optimization had proceeded far enough to give good structures and acceptable vibrational spectra, the heats of formation for a set of sulfides were also fitted, and all of these things were optimized simultaneously. The optimization methods were mostly trial and error, although least squares methods were used in the heat of formation calculations. As noted previously,⁷ the more general use of least squares methods for optimizing the structural parameters (as introduced by Lifson and Warshel⁸) did not work very well unless things were adjusted by hand in addition, and such procedures require enormous amounts of computer time. They were consequently not used in the present work, except for the heats of formation. (Standard least squares methods work directly with homogeneous data sets, where all the elements consist of quantities measured in the same units, and only their relative weightings need to be decided. In the present instance one wants to optimize many different kinds of physical quantities, and one needs to decide the relative weights of these different kinds of quantities. While we did this

Received 16 January 1991 Revised 11 June 1991

^{*} Author for correspondence.

[†]The MM3 program is available to all users from the Technical Utilization Corporation Inc., 235 Glen Village Court, Powell, Ohio 43065, and to commercial users only from Molecular Design Ltd., 2132 Farallon Drive, San Leandro, California 94577. The current version is available to run on most types of computers, and interested parties should contact one of the distributors directly.

[‡] The MM2 force field is summarized in Ref. 41. The original program (MM2(77)) is available from the Quantum Chemistry Program Exchange, Creative Arts Building 181, 840 State Highway 46 Bypass, Bloomington, Indiana 47405, Program 395. The latest version of MM2, referred to as MM2(87), is available to academic users from QCPE, and to commercial users from MDL (see previous footnote).

	· · · · · · · · · · · · · · · · · · ·	_					
Torsi	on						
Atom	type no	55		V1	V2	V3	
15	1	1	15	1.250	-0.300	0.000	
15	1	15	1	0.000	-0.900	0.300	* -
15	1	1	15	1.250	-0.300	0.000	*5
15	1	15	15	0.000	-0.900	0.300	*5
1	1	1	15	0.000	0.200	0.400	
1	1	15	1	-0.440	-0.260	0.600	
5	1	1	15	0.000	0.000	0.540	
1	1	15	44	-0.500	0.000	0.267	
5	1	15	1	0.000	0.000	0.660	
5	1	15	44	0.000	0.000	0.400	
1	1	1	15	0.000	0.200	2.150	*5
1	1	15	1	-0.440	-0.260	1.450	*5
56	15	56	56	0.000	0.000	1.150	*4
15	56	56	56	0.000	0.000	1.150	*4
5	56	56	15	0.000	0.000	0.540	
56	15	56	5	0.000	0.000	0.660	
50	1	50	15	0.000	0.000	0.540	
5	1	30	13	0.000	0.000	1.140	*<
30	1	1	20	0.000	0.000	1.160	ر ء*
56	15	56	1	0.000	0.000	1.160) *c
56	I	56	1	0.000	0.000	1.160) *-
1	1	56	15	0.000	0.000	1.160	5
2	1	15	44	0.000	0.000	0.270	
15	1	2	5	0.000	0.000	0.400	
15	1	2	2	0.000	0.000	-0.300	
Torsi	on–strei	tch					
Atom	type no	os		KTS			
	1	15		0.1700			
Bond	 s						
	Bond	type		k(s)	1(0)		
	15	44		3.87	1.3420		
	15	15		3.00	1.8050		
	1	15		3.00	1.8080	*5	
	15	56		3.00	1.8140	*1	
	15				1.8140		
Electi	ronegati	vity cor	rections to	10			
Bond	type		End	of bond	Atom type	<u></u>	Correction
-	1	15		15	44		0.020
	1	1		1	15		-0.001
	56	56		56	15		-0.010
	2	1		1	15		-0.010
Bond	dipole	momen	1				
Bond	type		Μ	loment			
<u></u>	1	15		1.20		- <u></u>	
	-		_	0.00			
	15	44		-0.30			
	15 15	44 56		- 1·20	*4		
	15 15 1	44 56 15	-	- 1·20 1·20	*4 *5		

Table 1. MME force field parameters for sulfur $^{\rm 1}$

(continued)

MM3 CALCULATIONS ON SULFIDES

Van Aton	der Wa	als	Ensilon	Radi		
		44	0.020	1.62	00	
Angl	es					
Aton	ı types		k(b)	Theta(0)	Ed. type	
1	15	44	0.650	96.000		
1	1	15	0.740	108.000	1	
1	1	15	0.740	109-500	2	
1	1	15	0.740	110.100	3	
1	15	1	0.840	95.900		
5	1	15	0.740	110.800	1	
5	1	15	0.740	110.000	2	
5	1	15	0.740	108.000	3	
2	1	15	0.650	107.800	1	
2	1	15	0.650	107.800	2	
2	1	15	0.650	113.900	3	
1	1	15	0.740	108.000	1	*5
1	1	15	0.740	109.500	2	*5
1	1	15	0.740	110.100	3	*5
1	15	1	0.840	96.900	-	*5
15	56	56	0.500	100.500	0	*4
56	15	56	0.470	94.300		*4
15	1	15	0.420	110.000		*5
15	1	15	0.420	110.000		*5
1	56	15	0.740	109.200		-
5	56	15	0.740	111.500		
Streto	ch-bena	1				
7	_	- 0 • 040	X-S-Y		· · · · · · · · · · · · · · · · · · ·	
8		0.010	X-S-H			
16		0.290	X-S-Y	*4		
20		0.280	X-S-Y	*5		
Hydr	ogen bo	onding				
2	44	0.200	2.830			
15	44	0.200	2.550			

Table 1. (Continued)

^a Atom type numbers are 1 for (sp³) carbon, 5 for hydrogen attached to carbon and 44 for hydrogen attached to sulfur. If the carbon is contained in a four-member ring, it is type 56. Parameters not given are defined in the program and published.¹ Bond lengths and angles are given in Å and degrees throughout this manuscript and otherwise CGS units are used. For further information, se the MM3 operations manual.

(Ref. 7) we found that it is expedient to simply adjust the parameters being optimized, rather than to very indirectly adjust the weighting scheme. The application of trial and error methods becomes increasingly difficult as the size of the data sets increase, however, and we may be close to the practical limit for the use of these methods at this point.)

The parameters required to define the force field for these compounds are given in Table 1. They must be added to those given previously for hydrocarbons² to obtain the full force field. These parameters supersede the preliminary set which was included in MM3(90),

and which were marked with ** to indicate that they were preliminary.

Infrared spectra for methanethiol, ethanethiol and dimethyl sulfide were used to optimize the bond stretching and angle bending constants in these molecules. Table 2 shows the experimental and calculated vibrational spectrum of each compound. The original experimental assignments of the methyl rocking frequencies of dimethyl sulfide were rather uncertain.⁹ From the other calculations and experimental spectra shown in Table 1, it seems unlikely that any of these frequencies could be above 1200 cm^{-1} . We have therefore revised

Methanethiol ¹⁰				Ethanethiol ¹¹			Dimethyl sulfide ⁹				
ммз	IR	Δ	Mode	MM3	IR	Δ	Mode	MM3	IR	Δ	Mode
2982	3000	- 18	С—Н	2930av	2950	- 20	с—н	2947av	2924	+ 23	С—Н
2980	2870	+10	C—H	2586	2575	+11	S—H	1434	1460	-26	CH₃ def.
2875			C—H	1493	1450	+ 43	CH ₂ scis.	1426			CH₃ def.
2585	2597	-12	S—H	1468	1450	+18	CH ₃ def.	1418	1420	- 2	CH₃ def.
1420	1475	- 55	CH3 def.	1457	1385	+ 72	CH ₃ def.	1415	.—		CH3 def.
1414	1430	- 16	CH ₃ def	1442			CH ₃ def.	1356	1325	- 31	CH3 def.
1352	1335	+ 17	CH ₃ def.	1376	1309	+ 67	CH ₂ twist	1353	1304	+ 49	CH ₃ def.
1013	1060	- 57	H-C-S	1269	1269	0	CH ₂ wag	1027	1040	-13	CH ₃ rock
1008	957	+ 61	H-C-S	1035	1097	- 62	CH ₃ rock	1021	1026	- 5	CH3 rock ^a
823	803	+20	C—S—H	1016	1049	- 33	CH ₃ rock	1010	976	+ 34	CH ₃ rock ^a
695	704	- 9	C-S	975	978	- 3	C-C	1002	919	+ 83	CH ₃ rock
249		-	torsion	850	870	- 20	C—S—H	702	704	- 2	S-C asym.
rms		34		801	745	+ 56	CH ₂ rock	683	683	0	S-C sym.
				662	660	+ 2	S—C	285	285	0	C—S—C
				334	332	+ 2	C-C-S	219		_	torsion
				268	_		torsion	188			torsion
				205	_	_	torsion	rms		30	
				rms		35					

Table 2. Vibrational spectra (cm^{-1}) of some simple sulfur compounds

^a The lines at 1274 and 1243 cm⁻¹ were assigned to these vibrations in Ref. 9. The two bands cited here were interpreted as combination bands.

two of these original assignments as shown in Table 2. The average rms error in the fit of the three compounds in Table 2 to the experimental spectra is 33 cm^{-1} , which is similar to the fit for hydrocarbons.¹⁻⁵

Dimethyl sulfide

A microwave study on this compound has been reported.¹² It was found to be in a C_{2v} conformation with both methyl groups staggered with respect to the adjacent C-S bond. The results of this study are shown in Table 3 and compared with the corresponding MM3 values.

Methanethiol

The structure of this compound and the barrier to internal rotation are known from microwave experiments.^{15,16} The results of these experiments are shown in Table 4 together with the corresponding MM3 values.

Ethanethiol

Three staggered molecular conformations are possible for ethanethiol, two enantiomers of C_1 point group symmetry and a single form of C_s symmetry. The

Parameter	MW ¹² (r _s)	ED^{13} (bond lengths r_g , bond angles r_{av})	MM3
 CS	1.802(2)	1 · 807(2)	1.808
C-S-C	98.87(17)	99.05(4)	98.1
S-C-Ha	110.75		109.8
S-C-H	106.6		109.2
Torsional barrier	2.3	2 · 1 ^b	2.25
IA	28·376 ^b	28 · 519°	29.009/2.03%
IB	66 · 314 ^b	66 · 522 °	65.931/-0.58%
I _C	88·387 ^b	88 • 488 °	$88 \cdot 371 / - 0 \cdot 02\%$

Table 3.	The	structure	of	dimethyl	sulfide
----------	-----	-----------	----	----------	---------

^aMW and ED are used throughout this manuscript to represent microwave and electron diffraction respectively, methods of structure determination. ^bReported in Ref. 14. The moments of inertia are the effective values for the ground vibrational state.

^c Moments of inertia for the zero-point average structure.

Parameter	$MW^{15,a}(r_0)$	MW ^{16,a}	MM3 ^a
C-S	1.819(5)	1.8177(2)	1.825
S—H	$1 \cdot 335(10)$	$1 \cdot 3291(40)$	1.343
C—S—H	96.5(5)	100.27(17)	96.8
C—H	1.092(10)	1.1039(20)	1.112
H—C—H	109.75(5)	110.27(17)	109.4
Torsional barrier	1.27	· · · ·	1.28
IA		0.493	0.838/
IB		6.502	6.559/0.87%
Īc		6.777	6 · 845/1 · 00%

Table 4. Comparison of the calculated and observed structures of methanethiol

^a The structural parameters correspond to the staggered geometries.

	Table 5. Observed and calculated structures of ethanethiol							
	MW struc	ture ²² (r_s)	MW struc	ture ²¹ (R_s)	М	M3		
Parameter	gauche	trans	gauche	trans	gauche	trans		
с_с	1 · 528(7)	1 · 529(6)	1 · 530	1.530	1.534	1.533		
C-S	1.814(9)	$1 \cdot 820(5)$	1.829	1.829	1.833	1.833		
<ccs< td=""><td>113·69°(48)</td><td>$108 \cdot 57^{\circ}(32)$</td><td></td><td></td><td>111.7</td><td>111.1</td></ccs<>	113·69°(48)	$108 \cdot 57^{\circ}(32)$			111.7	111.1		
<csh< td=""><td>96°(57)</td><td>96·22°(38)</td><td>95·23°</td><td>95·23°</td><td>97.0</td><td>96•7</td></csh<>	96°(57)	96·22°(38)	95·23°	95·23°	97.0	96 •7		
S—H	1.336(10)	$1 \cdot 322(6)$	1.328	1.328	1.343	1.343		
WCCSH	$61 \cdot 75^{\circ}(97)$	180°	60°	180°	61.8	180.0		
IA	17.580	17.784			18.360/4.4%	17.512/-1.5%		
IB	95.448	$92 \cdot 124(2)$			$95 \cdot 171 / - 0 \cdot 3\%$	95.632/3.8%		
Ic	104 • 283(3)	103 · 520(2)			104 • 528/0 • 2%	106.668/3.0%		

spectra of ethanethiol in the amorphous solid (glass) and crystalline forms at low temperature led to the conclusion that the *gauche* form is more stable in the crystal,¹⁷ and, from calorimetric data, an enthalpy difference of 0.3 kcal mol⁻¹ was estimated. A number of microwave studies of the molecule have been reported. ^{18–22} One of the more recent MW studies²¹ shows that the *gauche* conformer is more stable than the *trans* form by 0.41 ± 0.04 kcal mol⁻¹. The r_s structures for both the *gauche* and *trans* forms have been reported by Nakagawa *et al.*²² and r_s structures for both forms have also been proposed by Schmidt and Quade.²¹ The results of these MW studies are shown in Table 5 together with the corresponding MM3 values.

Table 6. Relative energies of different conformations of ethanethiol (kcal mol) $^{-1}$

Conformation	$E_{\rm rel}~({\rm obs.})^{17,23}$	$E_{\rm rel}$ (calc.)	
	0.0	0.0	
$C_{c}(T)$	0.30	0.29	
Ecl (H-H)	1 - 42	1.25	
Ecl (H-Me)		1.30	
$C_s Ecl(Hs on C)$		3.97	
$C_1 Ecl$ (Hs on c)	3.75	3.66	

The relative energies of the different conformations of ethanethiol are shown in Table 6 and compared with the experimental values which are available.

Ethyl methyl sulfide

The bond distances (r_g) and angles (θ_a) in ethyl methyl sulfide have been determined by gas electron diffraction.²⁴ The two C-S bond lengths have been estimated independently with the aid of the rotational constants for the trans conformer reported by Imaishi and Hayashi.²⁵ The dihedral angle for the gauche conformer was found to be $66 \pm 9^{\circ}$ and the fraction of the *trans* conformer in the gas phase at 20 °C is reported to be $N_t / (N_t + N_g) = 0.25 \pm 0.15$. If there is 25% of the trans form at 20 °C the enthalpy difference (ΔH) is ≈ 0.25 kcal mol⁻¹, favoring the gauche form. However, if there is 40% of the *trans* form at 20 $^{\circ}C \Delta H$ is $\approx 0.16 \text{ kcal mol}^{-1}$, favoring the *trans* form. Spectroscopic experiments have found that the two conformers have nearly the same energy in the gas phase,²⁶ the gauche conformer being 30 ± 50 cal mol⁻¹ more stable.²⁷ The MME calculations give an enthalpy difference of 0.13 kcal mol⁻¹, favoring the *trans* form. Table 7 shows the results of the electron diffraction study together with the corresponding MM3 values.

			MM3	
Parameter	Gas ED structure $(r_g)^a$	gauche	anti	av.
С-С	1.536(8)	1.534	1.533	1.534
СН	1.111(8)	1.113	1.113	1.113
C-S(methyl)	$1 \cdot 806(27)^{b}$	1.810	$1 \cdot 808$	1.809
C-S(methylene)	1.818(27) ^b	1.820	1.816	1.818
C-S(av)	1.813(4)	1.815	1.812	1.814
< CSC	$97 \cdot 1(1 \cdot 1)$	99.6	98.1	98.9
< SCC	$114 \cdot 0(0 \cdot 5)$	112.5	111.0	111.8
< HCH	$109 \cdot 6(1 \cdot 4)$	107.9	108.1	108.0
weese (gauche)	66(9)	72.3		
Ix	5.252°		5.375/2.34%	
In	26 · 458 °		26.558/0.38%	
I _C	30.099°		30.304/0.68%	

Table 7. The observed and calculated structures of ethyl methyl sulfide

^a Seems to be weighted *trans* and *gauche* parameters.

^b These distances were determined separately be a joint analysis of ED and MW data. The rest of the parameters obtained by the joint analysis were essentially equal to the ED values given in this table. ^c Moments of inertia obtained from the best-fit rotational constants corresponding to the r_a structure of the *trans* conformer derived from the combined analysis of ED and MW data. The r_a values for all the bond lengths (except C—H) are 0.002 Å smaller than the r_g values given in Table 7. The r_g value of C—H is 1.096 Å. Our calculated moments of inertia should be ca 0-1% larger than the experimental ones, here and in general.

Di-tert-butyl sulfide

The molecular structure of di-*tert*-butyl sulfide has been investigated by gas electron diffraction.²⁸ The molecule has C_2 symmetry. The structure of this molecule is very strained due to steric hindrance between the two bulky *tert*-butyl groups. Experimentally (ED)²⁸ it is found that the *tert*-butyl groups evade each other by tilting away by 7(2)° and by torsionally displacing by 12(8)° from the staggered geometry. The experimental value for the C—S—C angle is found to be larger in this molecule than in dimethyl sulfide and methyl ethyl sulfide by about 14°, and the S—C bond length (r_g) is longer by about 0.04 Å than in the other molecules. The MM3 calculations show the torsional displacement to be about 10°, the C—S—C angle to be wider by 15° and

Table 8. The observed and calculated structures of di-tertbutyl sulfide

Parameter	ED (bond lengths r_g , bond angles r_α)	MM3
SC	1.854(5)	1 · 852
C—C	1 - 539(3)	1 · 540
C—H	1.127(4)	1.112
<csc< td=""><td>113.2(12)</td><td>113.9</td></csc<>	113.2(12)	113.9
< SC ² C ³	$102 \cdot 2(9)$	106.2
<ccc< td=""><td>109.6(5)</td><td>$109 \cdot 2$</td></ccc<>	109.6(5)	$109 \cdot 2$
<cch< td=""><td>$111 \cdot 2(11)$</td><td>111.9</td></cch<>	$111 \cdot 2(11)$	111.9
Tilt ^a	7 • 1(20)	3.7

^a The tilt angle of the *tert*-butyl groups is the angle between the C-S bond and the line from the carbon to the point in the plane containing the three attached methyls which is equidistant from all of them.

the C—S bond length longer by about 0.04 Å than in the other compounds. Table 8 compares the structures of di-*tert*-butyl sulfide obtained from ED study and MM3 calculations.

Thiacycloalkanes

Some of the parameters for four- and five-membered ring sulfides were taken to be different from the parameters for open-chain compounds. The fourmembered ring parameters were based on electron diffraction data for thiacyclobutane²⁹ and 5-thiabicyclo [2.1.1] hexane.³⁰ The parameterization of the five-membered rings was based on electron diffraction data for thiacyclopentane³¹ and 7-thiabicyclo [2.2.1] heptane.³⁰

Thiacyclobutane

The structure of thiacyclobutane has been determined from a combination of electron diffraction and microwave spectroscopy.^{29,32} A nematic NMR structure of this molecule is also known.³³ The ring is puckered like cyclobutane (contrary to oxetane) and the potential function is found to have a double minimum with a barrier of 0.73 kcal mol⁻¹ at the planar configuration.³² The frequency of the ring-puckering motion obtained from precise microwave intensity measurements is reported³² to be 140 cm⁻¹. The MM3 force field gives a barrier of 0.73 kcal mol⁻¹ and the frequency of the ring puckering motion is calculated to be 166 cm⁻¹. Table 9 shows the results of the experimental

Parameter	ED^{29} (bond lengths r_g , bond angles r_{av})	NMR ³³	ммз
 C—C	1 · 549(3) ^b	1.550	1.550
Č—Š	$1 \cdot 847(2)^{b}$	1.845	1 · 844
C—S—C	76 · 8(3) ^a	76.7	76.8
C-C-C	95 · 6(4) a	95.2	95.3
C-C-S	90.6(3) ^a	90-9	90.5
$< C^{2}SC^{4} - C^{2}C^{3}C^{4}$	26(2) ^a		27.7
<i>I</i> ^A ^c	8.301		8.394/1.12%
IB ^c	12.575		12.666/0.73%
<i>Ic</i> ^c	18.897		18.914/0.09%

Table 9. The observed and calculated structures of thiacyclobutane

^a Derived from a joint analysis of diffraction intensities and rotational constants.

^b Derived from the r_{av} structure.

^c Calculated from the effective rotational constants for the ground vibrational state determined by MW spectroscopy.^{29,32}

		MI	M3	
Parameter	$ED^{31}(r_{g}, C_{2})$	<i>C</i> ₂	C _s	
	1.839(2)	1.840	1.823	
C-C	1.536(2)	1.537	1 · 548	
<csc< td=""><td>93.4(5)</td><td>93.3</td><td>88.7</td></csc<>	93.4(5)	93.3	88.7	
<ccs< td=""><td>$106 \cdot 1(0 \cdot 4)$</td><td>106.6</td><td>105 · 2</td></ccs<>	$106 \cdot 1(0 \cdot 4)$	106.6	105 · 2	
<ccc< td=""><td>$105 \cdot 0(0 \cdot 5)$</td><td>105.5</td><td>108.7</td></ccc<>	$105 \cdot 0(0 \cdot 5)$	105.5	108.7	
$\omega(S^{i}-C^{2})^{a}$	14.8(0.5)	14.2	43.0	
$\omega(C^2 - C^3)$	40.5(1.2)	39.0	31.0	
$\omega (C^3 - C^4)$	$52 \cdot 5(1 \cdot 6)$	50.4	0.0	

Table 10. The observed and calculated structures of thiacyclopentane

^a ω indicates the dihedral angle about the central bond.

studies and the MM3 calculations on the geometry of this compound.

Table 9 shows that the parameters fit quite well. I_A deviates more than 1% from the experimental value, but the overall fit seems to be good.

Thiacyclopentane

Some evidence exists that the pseudo-rotation of the ring in thiacyclopentane is restricted and that the conformation possessing C_2 symmetry is preferred.³¹ Pitzer and Donath³⁴ estimated this C_2 conformation to be about 3 kcal mol⁻¹ more stable than the C_s , and the value was later determined³⁵ to be 2.8 kcal mol⁻¹. Such a high barrier to pseudo-rotation is to be contrasted with that in cyclopentane (zero). This experimental value was determined using a heat capacity method and may contain considerable error. The MM3 value is only 1.78 kcal mol⁻¹ and seems to be too low. However, in order to fit the structure and the heat of formation, this is the best we can do with the barrier. Table 10 shows the results of the ED study together with the corresponding MM3 values.

5-Thiabicyclo [2.1.1] hexane and 7-thiabicyclo [2.2.1] heptane

The structures of both of these compounds have been determined by gas electron diffraction by Fukuyama *et al.*³⁰ In case of 7-thiabicyclo(2.2.1)heptane, the rotational constants obtained by Irie *et al.*³⁶ by microwave spectroscopy were also taken into account. This made it possible to determine the two non-equivalent C—C bond lengths in this molecule independently. The calculated and experimental structures for these molecules are given in Tables 11 and 12.

 Table 11. The observed and calculated structures of

 5-thiabicyclo [2.1.1] hexane

Parameter	ED ³⁰ (bond lengths r_g , bond angles, r_α)	MME	
$(C^{1}-C^{2}, C^{2}-C^{3})_{av}$	1.539(16)	1 · 546	
C ¹ C ⁶	1.564(24)	1.552	
C-S	1.865(4)	1.870	
C-Cav	1 • 549	1 · 549	
<csc< td=""><td>69 • 5(6)</td><td>68.0</td></csc<>	69 • 5(6)	68.0	

Parameter	$ED^{30}(r_{av})$	ED^{30} (r_g bond lengths, θ_{av} bond angles)	MM3
$C_1 - C_2$	1.535	1 · 538(6)	1.545
$C_2 - C_3$	1.557	1 - 561(15)	1.559
C-S	1.834	1.837(4)	1.836
< CSC	80.2	80-2(8)	81 · 1
I _A	30 · 5253 ª		30.8020/0.91%
I _B	31 · 7485 ^a		31.8787/0.41%
Ic	34·3937ª		34.5151/0.35%

Table 12. The observed and calculated structures of 7-thiabicyclo [2.2.1] heptane

^a The moments of inertia were obtained from the combined analysis of ED and MW data.

Parameter	ED (r_g)	tGg'	g'Gg	Average
С—Н	1.118(11)	1.114	1.114	1.114
S—H	$1 \cdot 373(15)$	1.343	1 · 343	1.343
CC	1.537(6)	1.539	1539	1.539
C-S	$1 \cdot 824(2)$	1.835(av.)	1.835	1.835
< CCS	113.1(4)	112.1	112.4	112.2
<hch< td=""><td>103.7(57)</td><td>106·3(av.)</td><td>106 · 1</td><td>106.2</td></hch<>	103.7(57)	106·3(av.)	106 · 1	106.2
<cch< td=""><td>$111 \cdot 1(13)$</td><td>109·3(av.)</td><td>109.3</td><td>109.3</td></cch<>	$111 \cdot 1(13)$	109·3(av.)	109.3	109.3
<sch< td=""><td>$108 \cdot 8(13)$</td><td>109.9(av.)</td><td>109.8</td><td>$109 \cdot 8$</td></sch<>	$108 \cdot 8(13)$	109.9(av.)	109.8	$109 \cdot 8$
TSCCS	69.0(15)	68.6	68 · 1	$68 \cdot 4$
L	9.031 a	9.169	9.365	
I _B	37 · 478 ^a	37.517	37.224	
I _C	43 · 358 a	43.621	43.154	
SH	$\sim 2 \cdot 70$	2.797	2.791	2.794
S…S	~ 3.50	3 · 492	3 · 499	3 · 495

Table 13. The structure of ethane-1,2-dithiol

^a Moments of inertia were obtained from rotational constants reported in Ref. 39.

Ethane-1,2-dithiol

Two electron diffraction studies have been reported on this molecule. Shultz and Hargittai³⁷ report a ΔH of 10.8 kcal mol⁻¹, favoring the *anti* form, at 70 °C. Barkowski *et al.*³⁸ report $\Delta E^0 = E_G^0 - E_A^0 = 0.41$ (86) kcal mol⁻¹ and $\Delta S^0 = S_G^0 - S_A^0 - R \ln 2 = -1.0$ (22) cal deg⁻¹ mol⁻¹. The MM3 calculations give a ΔH of 0.83 kcal/mol favoring the gTg' over the g'Gg form. Barkowski et al. also report the structure of this molecule. The MM3 calculations show that the tGt' and g'Gg forms are present in about the same amount as the tGg' form is less stable than the g'Gg form by only $0.04 \text{ kcal mol}^{-1}$. Therefore, the average structure of the two conformers (tGg' and g'Gg) (i.e. the bond lengths and angles averaged over the two structures) obtained from the MM3 calculations should be compared with the geometry reported in the ED study. The tGg' structure was the only one seen in the microwave spectrum. The average structures of the molecule obtained in the ED study and from the MM3 calculations are shown in Table 13.

Allylmercaptan

The molecular structure of allylmercaptan has been studied by microwave spectroscopy.⁴⁰ There are two

Table 14. The structure of allylmercaptan

	MW ⁴⁰	MM3	Error (%)
C=C	1.354	1.339	
CC	1.486	1 · 495	
C—S	1.819	1.829	
S—H	1.335	1.343	
< C = C - C	121.6	124 · 4	
<ccs< td=""><td>110.9</td><td>113.2</td><td></td></ccs<>	110.9	113.2	
<csh< td=""><td>96.5</td><td>96.6</td><td></td></csh<>	96.5	96.6	
ωςςς	124(3)	118.1	
weesh	50	58.1	
I_x^{a}	25.2163	25.4742	1.23
I_{ν}^{a}	180.7681	1.10	1.10
Í,ª	187.1004	188.9775	$1 \cdot 00$
Dipole moment	1 · 331	1.238	1 00

^a In atomic units.

MM3 CALCULATIONS ON SULFIDES

			*					
	Wt	$H_{\rm F}(0)$	SUMH.	Steric	POP	TORS	T/R	Compound
1	1	- 5 • 47	- 13.77	0.35	0.00	-0.42	2.40	Methanethiol
2	10	-11.07	- 19.46	1.23	0.06	0.00	$2 \cdot 40$	Ethanethiol
3	10	-8.96	-27.54	0.76	0.00	0.00	$2 \cdot 40$	Dimethyl sulfide
4	8	-16.23	$-26 \cdot 20$	2.30	0.28	0.42	$2 \cdot 40$	1-Thiabutane
5	6	-14.24	$-33 \cdot 23$	1.95	0.10	0.42	$2 \cdot 40$	2-Thiabutane
6	7	- 19 • 96	-38.92	3.10	0.22	0.84	$2 \cdot 40$	3-Thiapentane
7	9	$-18 \cdot 21$	-25.15	2.71	0.13	0.00	$2 \cdot 40$	2-Propanethiol
8	7	-21.63	-38.92	3.63	0.21	0.42	$2 \cdot 40$	3-Methyl-2-thiabutane
9	7	$-45 \cdot 15$	-61.67	14.81	0.00	0.84	$2 \cdot 40$	Di-tert-butyl sulfide
10	7	-8.15	- 34 • 89	11.22	0.16	0.42	$2 \cdot 40$	Thiacyclopentane
11	6	-15.18	-36.11	5.15	0.00	0.00	$2 \cdot 40$	Thiacyclohexane
12	8	-22.97	- 35 · 81	8.66	0.20	0.00	$2 \cdot 40$	Cyclohexanethiol
13	7	- 24 • 43	-46.70	4.05	0.60	1.26	$2 \cdot 40$	2-Thiahexane
14	3	14.51	$-24 \cdot 42$	19.98	0.00	0.42	$2 \cdot 40$	Thiacyclobutane
15	7	- 28 • 99	-44.61	5.86	0.00	0.42	$2 \cdot 40$	3,3-Dimethyl-2-thiabutane
16	7	$-23 \cdot 26$	-34.51	4.62	0.25	0.42	$2 \cdot 40$	2-Methyl-1-propanethiol
17	7	$-26 \cdot 20$	-30.84	3.96	0.00	0.00	$2 \cdot 40$	2-Methyl-2-propanethi0l
18	5	-30.38	-37.57	6.95	0.17	0.42	$2 \cdot 40$	2-Methyl-2-butanethiol
19	3	-28.01	- 44.61	4.77	0.14	0.84	$2 \cdot 40$	2-Methyl-3-thiapentane
20	4	- 35 · 37	-50.29	6.97	0.00	0.84	$2 \cdot 40$	2,2-Dimethyl-3-thiapentane
21	4	- 33.91	- 50 · 29	6.46	0.19	0.84	$2 \cdot 40$	2,4-Dimethyl-3-thiapentane
22	5	$-11 \cdot 42$	-34.58	18.17	0.16	0.42	$2 \cdot 40$	Cyclopentanethiol
23	5	- 16 · 34	-40.58	12.16	0.16	0.42	$2 \cdot 40$	2-Methylthiacyclopentane
24	5	$-2 \cdot 32$	- 15 • 91	2.23	0.33	0.42	2.40	Ethane-1-2-dithiol

Table 15. Heat of formation input data

^aSUMH is the contribution of the hydrocarbon portion of the molecule to the heat of formation.

	Compound	C—S	S—H	-sec	-tert	S—Me	SCCS	S-56
1	Methanethiol	1	1	0	0	1	0	0
2	Ethanethiol	1	1	0	0	0	0	0
3	Dimethyl sulfide	2	0	0	0	2	0	0
4	1-Thiabutane	1	1	0	0	0	0	0
5	2-Thiabutane	2	0	0	0	1	0	0
6	3-Thiapentane	2	0	0	0	0	0	0
7	2-Propanethiol	1	1	1	0	0	0	0
8	3-Methyl-2-thiabutane	2	0	1	0	1	0	0
9	Di-tert-butyl sulfide	2	0	0	2	0	0	0
10	Thiacyclopentane	2	0	0	0	0	0	0
11	Thiacyclohexane	2	0	0	0	0	0	0
12	Cyclohexanethiol	1	1	1	0	0	0	0
13	2-Thiahexane	2	0	0	0	1	0	0
14	Thiacyclobutane	0	0	0	0	0	0	2
15	3,3-Dimethyl-2-thiabutane	2	0	0	1	1	0	0
16	2-Methye-1-propanethiol	1	1	0	0	0	0	0
17	2-Methyl-2-propanethiol	1	1	0	1	0	0	0
18	2-Methyl-2-butanethiol	1	1	0	1	0	0	0
19	2-Methyl-3-thiapentane	2	0	1	0	0	0	0
20	2,2-Dimethyl-3-thiapentane	2	0	0	1	0	0	0
21	2,4-Dimethyl-3-thiapentane	2	0	2	0	0	0	0
22	Cyclopentanethiol	1	1	1	0	0	0	0
23	2-Methylthiacyclopentane	2	0	1	0	0	0	0
24	Ethane-1,2-dithiol	2	2	0	0	0	1	0

Table 16. Heat of formation input

Best value	es					
CS = -sec = S-Me = S-56 =	-	6 · 173 2 · 956 1 · 529 8 · 065	S—H = - <i>tert</i> = SCCS =	- 1 · 610 - 6 · 902 - 0 · 919		
	Wt	$H_{\rm f}(0)$	Calc.	$H_{\rm f}(0)$ Exp.	Difference (calc exp.)	Compound
1	1	- :	5.35	- 5.48	0.12	Methanethiol
2	10	- 1	1.20	- 11.07	-0.13	Ethanethiol
3	10	- 4	8-97	-8.96	-0.01	Dimethyl sulfide
4	8	- 10	6.23	- 16 • 23	0.00	1-Thiabutane
5	6	- 14	4 • 49	- 14 - 24	-0.25	2-Thiabutane
6	7	- 20	0.01	- 19 • 96	-0.05	3-Thiapetane
7	9	- 11	8.30	-18.21	-0.09	2-Propanethiol
8	7	- 2	1 • 34	-21.63	0.29	3-Methyl-2-Thiabutane
9	7	- 4	5.08	-45.15	0.07	Di-tert-butyl sulfide
10	7	- 1	8.35	-8.15	-0.50	Thiacyclopentane
11	6	- 10	6.21	-15.18	-1.03	Thiacyclohexane
12	8	- 22	2.95	-22.97	0.02	Cyclohexanethiol
13	7	- 24	4.51	$-24 \cdot 43$	-0.08	2-Thiahexane
14	3	14	4.51	14.51	0.00	Thiacyclobutane
15	7	- 28	8.96	-28.99	0.03	3,3-Dimethyl-2-thiabutane
16	7	- 22	2.25	$-23 \cdot 26$	1.01	2-Methy-1-propanethiol
17	7	-20	6.82	$-26 \cdot 20$	-0.62	2-Methyl-2-propanethiol
18	5	- 29	9•97	-30.38	0.41	2-Methyl-2-butanethiol
19	3	- 21	7.07	-28.01	0.94	2-Methyl-3-thiapentane
20	4	- 34	4.64	$-35 \cdot 37$	0.73	2,2-Dimethyl-3-thiapentane
21	4	- 33	3 · 96	- 33 • 91	-0.02	2,4-Dimethyl-3-thiapentane
22	5	- 1	1 · 82	$-11 \cdot 42$	-0.40	Cyclopentanethiol
23	5	- 10	6.05	- 16 • 34	0.29	2-Methylthiacyclopentane
24	5	- 2	2.32	$-2 \cdot 32$	0.00	Ethane-1,2-dithiol

Table 17. Heat of formation output data^a

^a Standard deviation = 0.44.

Table 18. Heat of formation data for strain energy calculations

	Wt	$H_{\rm f}(0)$	SUMH	Steric	POP	TORS	T R	Compound	
1	10	- 5 · 35	- 13.77	0.00	0.00	-0.42	2.40	Methanethiol	
2	10	$-11 \cdot 20$	-18.44	0.00	0.06	0.00	2.40	Ethanethiol	
3	10	-8.97	-27.54	0.00	0.00	0.00	2.40	Dimethyl sulfi	de
4	10	$-14 \cdot 49$	- 32.21	0.00	0.10	0.42	$2 \cdot 40$	2-Thiabutane	
5	10	-18.30	$-23 \cdot 12$	0.00	0.13	0.00	2.40	2-Propanethio	1
6	10	- 26 · 82	$-27 \cdot 80$	0.00	0.00	0.00	$2 \cdot 40$	2-Methyl-2-pro	panethiol
7	10	-16.23	- 24 • 12	0.00	0.28	0.42	2.40	1-Thiabutane	-
8	10	-9.48	$-42 \cdot 39$	0.00	0.34	1 · 26	2.40	2,5-Dithiahexa	ine
	Compo	und		C—S	S—H	-sec	-ter	S-Me	SCCS
1	Methan	ethiol		1	1	0	0	1	0
2	Ethanet	hiol		1	1	0	0	0	0
3	B Dimethyl sulfide			2	0	0	0	2	0
4	2-Thiabutane			2	0	0	0	1	0
5	5 2-Propanethiol			1	1	1	0.	0	0
6	5 2-Methyl-2-propanethiol		thiol	1	1	0	1	0	0
7	7 1-Thiabutane			1	1	0	0	0	0
8	2,5-Ditl	niahexane		4	0	0	0	2	1

Best valu	es					
C—S = - <i>sec</i> = S-Me =		$6 \cdot 593 - 2 \cdot 536 - 1 \cdot 533$	S—H = - <i>tert</i> = SCCS =	-1.767 -6.246 -0.527		
	Wt	<i>H</i> _f (0) Calc.	$H_{\rm f}(0)$ Exp.	Difference (calc. – exp.)	Compound
1	10		5.43	- 5 · 35	- 0.08	Methanethiol
2	10	- 1	11.15	-11.20	0.02	Ethanethiol
3	10		8-89	-8.97	0.08	Dimethyl sulfide
4	10	- 1	14 · 57	$-14 \cdot 49$	- 0.08	2-Thiabutane
5	10	- 1	18.30	-18-30	0.00	2-Propanethiol
6	10	- 2	26.82	$-26 \cdot 82$	0.00	2-Methyl-2-propanethiol
7	10	- 1	16 • 19	-16.23	0.04	1-Thiabutane
8	10	-	9.48	-9.48	0.00	2,5-Dithiahexane

Table 19. Heat of formation output data for strainless compounds^a

^a Standard deviation = 0.054.

stable isomers, *cis* and *gauche*, with respect to the C=C-C-S dihedral angle. The *gauche* conformer was found to be more stable by MM3 calculation, which agrees with experiment (Table 14).

Heats of formation

These can be calculated in the usual way using the bond increment method.⁴¹ The experimental data were taken from Refs. 42-44 and are summarized in Table 15. The parameters required for simple sulfides and mercaptans are the C-S and C-H bond parameters, and structural parameters for secondary tertiary and methyl groups attached to sulfur. To fit the cyclobutyl derivative, a parameter is needed for the sulfur-cyclobutane carbon, which one would expect to be similar to, but not identical with, the ordinary C-S bond. Additionally, a parameter is required to fit a vicinal disulfide. Table 16 shows the number of times each parameter appears in each compound. The least squares fitting to the data gives the parameters and results shown in Table 17. The standard deviation is $0.44 \text{ kcal mol}^{-1}$, which is similar to the value found for hydrocarbons, and also similar to the experimental errors from the combustion data. Strainless heats of formation may also be calculated as in Tables 18 and 19. The actual heat of formation calculated for a molecule, minus this strainless value, is a measure of the strain energy of the compound.

CONCLUSIONS

Structures, energies (conformational, and heats of formation) and a few other properties have been examined for 24 sulfides (including mercaptans), and in general the data can be well reproduced. Additionally, the vibrational spectra for three simple molecules have been well reproduced. For these, the average rms error is 33 cm^{-1} . This error could presumably be reduced by adding more cross-terms into the spectroscopic calculation.

There is one notable systematic error in the structures which will have to be addressed later. This concerns the bond angle C-C-S in molecules in which this angle is present. The angle opens out much wider in the gauche conformation than it is in the anti, and while MM3 calculates some opening, the approximate experimental opening (4°) is a good deal larger than the approximate calculated value (1°). For the present, the error has been averaged out, but still appears as an error between 1° and 2° in bond angles of this type in many compounds. A torsion-bend interaction for this kind of angle is necessary in order to reduce this error. A similar error has been found with the corresponding oxygen compounds, the amines and the phosphines.¹ There seems to be no doubt now that the error is in fact quite general for compounds of the type C-C-X. Since this type of interaction was not explicitly included in earlier studies with other kinds of functional groups, it is similarly omitted here, but will eventually need to be included in all of these kinds of structures.

ACKNOWLEDGEMENT

The authors are indebted to the National Science Foundation (Grant # CHE 8614548), the National Institutes of Health (Grant # R24 RR02165) and Glaxo Inc. for support of this work.

REFERENCES

- N. L. Allinger, Y. H. Yuh and J.-H. Lii, J. Am. Chem. Soc. 111, 8551, 8566, 8576 (1989).
- N. L. Allinger, M. Rahman and J.-H. Lii, J. Am. Chem. Soc., 112, 8293 (1990).

- L. R. Schmitz and N. L. Allinger, J. Am. Chem. Soc., 112, 8307 (1990).
- 4. N. L. Allinger, F. Li and L. Yan, J. Comput. Chem., 11, 848 (1990).
- 5. N. L. Allinger, F. Li, L. Yan and J. C. Tai, J. Comput. Chem., 11, 868 (1990).
- K. B. Lipkowitz and N. L. Allinger, QCPE Bulletin 7, 19 (1987).
- 7. D. H. Wertz and N. L. Allinger, Tetrahedron 35, 3 (1979).
- 8. S. Lifson and A. Warshel, J. Chem. Phys. 49, 5116 (1968).
- 9. H. W. Thompson, J. Mol. Spectrosc. 9, 38 (1941).
- H. W. Thompson and N. P. Skerrett, J. Mol. Spectrosc. 8, 812 (1940).
- J. P. McCullough, D. W. Scott, H. L. Finke, M. E. Gross, K. D. Williamson, R. E. Pennington, G. Waddington and H. M. Huffman, J. Am. Chem. Soc. 74, 2801 (1952).
- 12. C. O. Kadzhar, A. A. Abbasorv and L. M. Imanov, *Opt. Spectrosc.* (USSR) 24, 334 (1968).
- T. Iijima, S. Tsuchiya and M. Kimura, Bull. Chem. Soc. Jpn. 50, 2564 (1977).
- 14. L. Pierce and M. Hayashi, J. Chem. Phys. 35, 479 (1961).
- 15. T. Kojima, J. Phys. Soc. Jpn. 15, 1284 (1960).
- 16. R. W. Kilb, J. Chem. Phys. 23, 1736 (1955).
- D. Smith, J. P. Devlin and D. W. Scott, J. Mol. Spectrosco. 25, 174 (1968).
- L. M. Imanov, C. O. Qajar and A. A. Abbasov, *Phys. Lett.* 24A, 485 (1967).
- C. O. Kadzhar, Izv. Akad. Nauk Az. SSR, Ser. Fiz. Tekh. Mat. Nauk, 3, 18 (1969).
- C. O. Kadzhar, A. A. Abbasov and L. M. Imanov, *Opt. Spectrosc.* (USSR) 24, 334 (1968).
- R. E. Schmidt and C. R. Quade, J. Chem. Phys. 62, 3864 (1975).
- J. Nakagawa, K. Kuwada and M. Hayashi, Bull. Chem. Soc. Jpn. 49, 3420 (1976).
- A. J. Barnes, H. E. Hallam and J. D. R. Howells, J. Chem. Soc., Faraday Trans. 68, 737 (1972).
- K. Oyanagi and K. Kuchitsu, Bull. Chem. Soc. Jpn. 51, 2243 (1978).
- 25. H. Imaishi and M. Hayashi, J. Sci. Hiroshima Univ. Ser. A 38, 21 (1974).
- M. Hayashi, T. Shimanouchi and S. Mizushima, J. Chem. Phys. 26, 608 (1957).

- M. Sakakibara, H. Matsuura, I. Harada and T. Shimanouchi, Bull. Chem. Soc. Jpn. 50, 111 (1977).
- 28. A. Tsuboyama, S. Konaka and M. Kimura, J. Mol. Struct. 127, 77 (1985).
- K. Karakida and K. Kuchitsu, Bull. Chem. Soc. Jpn. 48, 1691 (1975).
- T. Fukuyama, K. Oyanagi and K. Kuchitsu, Bull. Chem. Soc. Jpn. 49, 638 (1976).
- Z. Nahlovska, B. Nahlovsky and H. M. Seip, Acta Chem. Scand. 23, 3534 (1969).
- (a) D. O. Harris, H. W. Harrington, A. C. Luntz and W. D. Gwinn, J. Chem. Phys. 44, 3467 (1966). (b) L. H. Scharpen, J. Chem. Phys. 48, 3552 (1968).
- 33. D. F. R. Gilson, personal communication.
- 34. K. S. Pitzer and W. E. Donath, J. Am. Chem. Soc. 81, 3213 (1959).
- 35. (a) W. N. Hubbard, H. L. Finke, D. W. Scott, J. P. McCullough, C. Katz, M. E. Gross, J. F. Messerly, R. E. Pennington and G. Waddington, J. Am. Chem. Soc. 74, 6025 (1952). (b) G. A. Crowder and D. W. Scott, J. Mol. Spectrosc. 16, 122 (1965).
- K. Irie, T. Tanaka, E. Hirota, Y. Tamaru, I. Tabushi and Z. Yoshida, 27th Annual Meeting of the Chemical Society of Japan, Nagoya 1M02 (1972).
- 37. Gy. Shultz, and I. Hargittai, Acta Chim. Acad. Sci. Hung. Tomus 75, 381 (1973).
- 38. S. L. Barkowski, L. Hedberg and K. Hedberg, J. Am. Chem. Soc. 108, 6898 (1986).
- 39. R. N. Nandi, C.-F. Su and M. D. Harmony, J. Chem. Phys. 81, 1051 (1984).
- 40. K. V. L. N. Sastry, S. C. Dass, W. V. F. Brooks and A. Bhaumik, J. Mol. Spectrosc. 31, 54 (1969).
- 41. Burkert U. and N. L. Allinger, *Molecular Mechanics*, American Chemical Society, Washington, D.C. (1982).
- 42. J. D. Cox and G. Pilcher, *Thermochemistry of Organic* and Organometallic Compounds, Academic Press, New York (1970).
- 43. J. B. Pedley and J. Rylance, Sussex-N.P.L. Computer Analyzed Thermochemical Data, University of Sussex (1977).
- 44. J. B. Pedley, R. D. Naylor and S. P. Kirby *Thermo-chemical Data of Organic Compounds*, 2nd ed., Chapman and Hall, London (1986).